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Introduction and Objectives

The objective of this research program was to perform fundamental studies to establish
the utility of self-organizing S/Ge nanostructures for eventual use in quantum-dot (QD)
electronic devices. These studies will consist of three major components: a) optimize the
size and distribution of the three-dimensional pyramidal clusters that form in
SiGe/Si(001) films and multilayers under defined growth conditions; b) design and
simulate basic device building blocks and test structures for semiconductor devices that
incorporate SiGe QDs, and c) make electronic and optoelectronic properties measure-
ments and correlate these to structural and compositional ones to test the utility of arrays
of pyramidal clusters for QD electronic devices. We use the simplest possible film struc-
tures that allow unequivocal determination of particular electronic properties and fabri-
cate the structures that are essential to these studies.

Small pyramidal Ge or SiGe clusters grow in a self-organized fashion when Ge is depos-
ited or Si and Ge are codeposited on Si(001). The strain induced by the lattice mismatch
(4% maximum) causes the formation of these 3D islands, in accordance with the Stran-
ski-Krastanov growth mode. Growing multilayers of alternately a film of SiGe alloy
(forming these pyramidal clusters) and a film of Si (which acts as a spacer layer to embed
the 3D pyramids) leads to further self-organization and the vertical replication of the
quantum dots. However, none of the parameters required for good electronic properties —~
size, shape, spacing, composition, strain distribution — have been optimized. In fact, we
do not even know what optimization means without making measurements to test the cor-
relation between morphology and electronic properties. Our goal in this grant was to be-
gin this process by choosing the simplest conditions for exploring electronic properties of
SiGe QDs.

The grant includes a subcontract to RPI, Prof. Michael Shur.

Accomplishments/New Findings

a. QD growth optimization. We have learned how to vary sizes, shapes, and spacings of
3D QD islands in SiGe on Si(001) under a variety of growth conditions and to control
these parameters with proper processing. We have been optimizing the processing pa-
rameters for the growth of these pyramid-shaped quantum dots in CVD and MBE as well
as in a low-energy electron microscope (LEEM) outfitted with gas-source MBE. We
have made progress in understanding how the pyramids can be made small in CVD and
what needs to be done to maintain their shape when they are embedded in a Si matrix, as
they always must be. Making them small is a matter of adjusting the composition and
growing at low temperatures. We have learned to make them sparse or dense. We have
learned what must be done to maintain shape during embedding.

We have also begun growth on laterally patterned substrates. We have learned in the
LEEM how to make Si(001) mesas that are step-free over at least 10 micrometers.
Growth on such substrates allows us to study in more detail the influence of defects on




the formation of 3D islands. Most recently we have begun to use silicon-on-insulator
substrates for growth, and have also patterned these substrates. We have used Si template
film thicknesses as low as 10nm.

Structural and morphological measurements we make routinely include AFM, TEM, and
in-situ RHEED. RHEED is used to determine the onset of QD formation during growth
in. TEM is used for cross-section studies of QD organization. AFM is used post-growth
to observe QDs and QD arrays. STM is occasionally used in a parallel fashion to test
particular ideas. Figure 1 shows several AFM images of different configurations of QDs
grown on Si(001).
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Figure 1: AFM images of quantum dots on Si(001). Left: Small and sparse pyramidal
pure-Ge "hut" crystals; image taken with a carbon nanotube probe. These types of QDs
(size and density) are used in the electrical measurements described later. Middle: a sin-
gle step-free mesa of Si on SOI, about 10 microns square, with QDs. Most Ge nucleates
at the edges to produce a window frame effect; some hut crystals are visible in the rest of
the region. Right: a number of mesas on SOI, grown out so QDs fill the whole mesa.

b. Review of band structures of Si and Ge and effect of strain. Figure 2 shows sche-
matically the band structures of bulk Siand bulk Ge. Both are indirect-gap materials. For
Si, the conductance band minimum is at the X point, and is 6-fold

\ j A(4) \ /
A2 N
(2) CB
17 e 0.74 e
r X, r L
VB
Bulk Si Bulk Ge

Figure 2: Schematic band diagrams of bulk Siand Ge.




degenerate (A(2) + A(4)). For Ge, the conductance band minimum is at the L point and it
is 4 fold degenerate. At 0K, the gaps between minima of the conductance band to the
maxima of the valence band are 1.17¢V and 0.74eV for Si and Ge respectively. Strain af-
fects this band structure. For heteroepitaxy, a biaxial strain is induced, which resolves
into a hydrostatic strain and a uniaxial strain, as shown in Fig. 3. The hydrostatic strain
shift both the positions of conductance band and valence band while the uniaxial strain
splits the conductance band from 6-fold degeneracy to two minima [A(2) and A(4)] and
the valence band to two levels [heavy hole and light hole]. If the strain is compressive, as
it is in epitaxially grown Ge on Si, the conductance band minimum is at A(4), while the
valence band maximum is at the heavy-hole maximum.

Hydrostatic Shift CB and VB

b
/
.

Strain / 4 A(2) (out of plane)
biaxial) CB
a ool A(4) (in plane)
Uniaxial split
P hh
VB
\ 1h

Figure 3: Effect of strain on band structure in SiGe.

Figure 4 shows the band structure of SiGe alloy grown on Si. The dotted lines are the
conductance and valence band energies of unstrained SiGe. The conductance and valence
bands split as the Ge content increases. For pure Ge on Si, the strained band gap is only
about 0.5eV between A(4) and the heavy-hole band maximum. The valence band offset
for strained Ge on Si is about 0.7¢V. The conductance band offset is relatively small. It is
about 0.05eV.
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Figure 4: Dependence of band edges on Ge concentration in Si.




¢. Review of quantum confinement. Quantum dots with diameter smaller than 100nm
can be viewed as artificial atoms with discrete energy levels and s-p like orbital occupa-
tion of electrons or holes. A simple parabolic lateral potential can be used to describe the
quantum confinement in quantum dots. The height of the potential barrier is from the
ground state energy to the Si valence band edge. The ground state energy is mainly de-
termined by the vertical confinement of the quantum dots, which is usually much larger
than the lateral confinement. (For Ge dots with {105} facets, the vertical size is about 10
times smaller than it base size). By this approximation, the heavy-hole state separation is

E, = (N + Yo , with

oo [K 2 \/2<Emd “E)
m;:h D m;m

D is the average diameter of the quantum dots, and Ey and Eground are Si valence band en-
ergy and ground state of Ge quantum dots respectively. For a quantum dot with size
D~30nm, the ground state energy with respect to the Si valence band edge measured with
PL (see below) is ~330meV. The heavy-hole separation energy Ey is then about 28meV.

In addition, the self-capacitance of a small quantum dot is on the order of 10771078 F.
Therefore, Coulomb-charging effects cannot be neglected. Charges inside a quantum dot
are very close to each other, hence the Coulomb repulsion is large enough to cause a
large change of holes separation energies solely due to the quantum confinement effect.
For a quantum dot with size D~30nm, the energy gain due to Coulomb charging AE quomb
is about 12meV, comparable with the heavy hole separation energy.

d. Design basic electronic-device building blocks. Our approach has been to look at
film structures with one or more buried QD layers for potential electronic/optoelectronic
devices, rather than thinking about devices that would make use of a single quantum dot.
Our intent has been to make device structures that will allow us to test the electronic
properties that result from variations in the properties of a QD layer (or layers). We are
interested in exploring the following properties:

e Are holes trapped in the QD layer?

e Can we estimate the number of holes trapped on average in a QD?

e Can we determine the thermal activation energy of heavy holes in QDs?

e Can we determine the ground state energy of heavy holes?

We have prepared device structures that allow us to measure these properties. Figure 5
shows a schematic diagram of one to these structures along with an AFM image of the
size and density of QDs that were in this layer. After the QD layer is buried, the QD size
may change slightly and the composition will become less Ge rich, but the dot density
remains the same. The structures have a front Schottky contact to enable band bending
and an ohmic contact on the back.




P*Si

a2 T

Al Contacl
Single layer of dots Dots density around 3.4x10'%cm-?
buried at 550°C (MBE) lateral size 30nm; height 3nm

Figure 5: Simple device structure containing one layer of Ge QDs, along with AFM im-
age of these dots before they are buried by the top Si layer. The sample is grown by s
MBE with substrate temperature 550°C. A P* substrate with resistivity 0.001-0.002 Qcm
(~10"cm™ doping level) is used. 100 nm thick undoped Si is grown as a buffer layer.
After that, 6 ML of Ge is deposited. Then the sample is capped with 400 nm undoped Si.
Note the QD density and size.

e. Electrical measurements. The following types of measurements were made:
Electrical:
Multi-frequency C-V: determine whether holes are trapped in the QD layer and
estimate the number of holes trapped per dot

Admittance spectroscopy: Thermal activation energy of heavy holes in dots

Figure 6 shows sciiematically the experimental setup for the electrical measurements.

Cryostat & cold head HP 4284 MF LCR
(sample inside) GPIB
—

*Experimental variables *Quantities measured
— Temperature - Capacitance
— Applied frequency - Admittance
- Applied voltage — Current

Figure 6: Experimental setup for electrical measurements.

We have made C-V measurements on samples such as that shown in Fig. 5, both with a
single layer of QDs and with two layers of QDs. From the C-V measurements we can, by




differentiation, determine the holes trapped in the QD layer, and from the QD density
determined with AFM, we can extract the average number of holes in a QD. Our results
give 6 holes per QD! The results are illustrated in Fig. 7.
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Figure 7: C-V measurement of the sample shown in Fig. 5 at 170K and 100kHz. An ac-
cumulation of charge in the QD layer is clearly evident. The carrier density profile is
shown in the right panel. Analogous measurements as a function of temperature show a
decrease in the width of the plateau region in the C-V measurement. At temperatures be-
low 85K, there is no plateau at all, indicating ‘hat no carriers inside the QD layer contrib-
ute to the capacitance reading. Below this temperature the carriers cannot respond to the
rapidly changing external signal. The cari.ers are frozen inside the QD layer. Because in
C-V the differential capacitance is being measured, by integrating the capacitance in the
voltage range where charges are depleted from the Ge QD layer, the total charge being
depleted from the QD region can be obtained. Dividing the total charge by the number of
QDs under the contact area yields the average number of charges being stored inside one
QD. This integration gives about 6 holes per dots.

Admittance spectroscopy at different temperatures was performed to obtain the thermal
activation energies of holes inside the QDs. There are usually several energy levels due
to quantum confinement. By applying an external DC voltage, the Fermi level can be
changed relative to these quantum levels. Only holes with energy nearest to the Fermi
level will be depleted from the quantum dots. In this way, different energy levels can be
approached.
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The experiment is done at temperatures from 100K to 295K with 5K steps. The tem-
perature resolution is better than 0.5K. At each temperature point, capacitance and con-
ductance are measured at frequencies of 50k, 80k, 100k, 200k, 400k, 600k, 800k and
1MHz with applied gate bias from 0V to 2V with 0.2V steps. Figure 8 shows results.

10

s 00 0

ov

0.2v
0.4V
0.6V
0.8V

- = 12V

1.6V Ao 95 10 1.5 26 25 Y0 3F 30 35

om [V]

A PO S Y 2 A A U SR S
02 00 02 04 06 08 10 12 14 16 18

§ 2 3
0.007 140

0.005 0.006
1Tm (k")

0.004
- Gate Voltage (V)

dln(—T‘i;l—)
B d()

E =k

Figure 8: Results of admittance spectroscopy of a single QD layer in the structure shown
in Fig 5. Left panel: Arrhenius plots from admittance spectroscopy at various bias volt-
ages. The slopes of these curves give the activation energy of holes at different biases.
Activation energies range from 155meV to 295meV as a function of bias voltage, plotted
in the right panel. It is likely that in these experiments the QD density of states is quasi-
continuous, because of the breath of each level caused by the size distribution in the
~10'" QDs participating in this measurement. Inset: Result by AUsireiter for much larger
QDs containing about 70 holes per dot. ~ *

f. Optical measurements. Photoluminescence measurements were made to obtain the
ground state energy of heavy holes in the QDs. Some results are shown in Fig. 9. From
them we can determine the ground state energy of the holes. The PL from quantum dots
is regarded as a spatially type II transition. The recombination occurs between holes at
the ground state and the Si conductance band edge. Assuming that the QD transition is a
non-phonon assisted transition, then the position of the QD peak gives the ground state
energy of the holes. In this case, the ground state is about 330meV. The FWHM is about
90meV, representing the size distribution of the quantum dots.

Our results suggest that a tuneable wavelength QD infrared photodetector can be fabri-
cated from SiGe QDs. A possible structure is shown in Fig. 10. A multilayer structure of
doped QDs are grown in the manner that we have developed. The size distribution be-




comes narrower as more layers are added. The device is tuned by tuning the vertical gate
voltage.
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Spatially type II transition
From ground state to Si CB edge ~330meV
FWHM ~90meV (size distribution)

Figure 9: PL spectra, taken at 12K of Si substrate and the structure shown in Fig. 3, con-
taining the QD layer. The separation of the QD peak at 0.83eV and the Si peak is

330meV. The width of the QD peak is due to the size distribution of the QDs in the field
of view of the laser beam.

IR light |]]]
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Top view
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Al Contact

Absorption wavelength is tuned by vertical gate voltage

Figure 10: Schematic diagram of a wavelength tuneable QD IR photodetector. The vi-
ability of this QDIP is demonstrated by our results.

Summary

We have grown self-assembled SiGe QD films and multilayers and have characterized

growth with a view toward making structures that are most suitable for QD electronic de-
vices that use an ensemble of QDs rather than just one.




We have made simple device structures from these films. We have developed processing
conditions suitable for making device structures that contain QD layers, which are sensi-
tive to high-temperature processing.

From electrical measurements we determined:

An average of 6 holes per QD
Activation energies of heavy holes in QDs
Quasi-continuous density of state due to size distribution of QDs.

From PL measurements we determined:
Heavy hole ground state energy is 330meV

Our results suggest a potential application of QD multilayers for tunable-wavelength IR
detectors.
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Subcontract

This grant included a subcontract to Prof. Michael Shur at RPI, primarily for theoretical
studies. The work at RPI was highly successful. Because of the initially rather slow rate
of the experimental work, there was less collaboration and overlap between the two ef-
forts than we would have liked. Much potential exists at this stage for such further col-
laboration, given the status of the experimental work at present.

Executive Summary

We showed that the space dependence of the effective mass in quantum wires results
in appearance of additional momentum-dependent potential. If the effective mass is ani-
sotropic (as in silicon or germanium), this effect strongly depends on the transverse mass
for a given subband. We considered Si-Ge p-type quantum wires, where the impact ioni-
zation by holes should be determined by the impact ionization rates in silicon, and not in
SiGe. ‘

We also proposed a semi-analytical model for the quantum dots spectra that accounts
for the space dependence of electron (hole) effective mass and the effective mass anisot-
ropy of the dot material and of the surrounding matrix. This dependence and this anisot-
ropy significantly affect the position of the quantum levels. Our analysis shows that
quantum dot spectra are relatively insensitive to the exact shape of the quantum dots.

The results of this work have been published in two refereed publications and will be
included into the book on quantum dots that we are now editing (see Section 4 of the Re-
port).

1. Consequences of space dependence of eifective mass in quantum wires
Introduction

The space dependence of the effective mass in quantum wires results in appearance of
additional momentum-dependent potential. If the effective mass is anisotropic (as in sili-
con or germanium), this effect strongly depends on the transverse mass for a given sub-
band. As an example, we considered Si-Ge p-type quantum wires, where the impact
ionization by holes should be determined by the impact ionization rates in silicon, and not
in SiGe.

In the heterostructure devices with quantum wells, quantum wires or quantum
dots, the electron effective mass depends on coordinate. Several authors (see, for exam-
ple, [1-3]) considered the consequences of the space dependence of electron effective
mass for quantum wells of finite depth formed by two materials with parabolic conduc-
tion bands and different electron masses in the barrier and well region.

As shown in [1-3], the space dependence of effective mass leads to the appear-
ance of momentum-dependent additional potential, U(g)
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1 1
S 1
U(g)=¢ (2"11 > ), (1)

where m; and m; are the effective masses in the quantum well and barrier regions, re-
spectively (see Fig.1a), and q is the longitudinal momentum. As can be expected from
the Kane model, the electron effective mass in the narrow band material is usually
smaller than in the wide-band material (m;<m,). Hence, the additional potential U(g)
leads to the disappearance of quantum well for the electrons (or holes) with the longitudi-
nal momentum

Yo @
(1/2m, -1/2m,)
Here Up is the depth of the potential well created by the conduction (or valence) band dis-
continuities. As predicted in [3], the electrons (or holes) with such ¢’s are localized in
the barrier region of the heterostructure.

In the simplest case of quantum wire formed by two materials with parabolic con-

duction bands, the total energy is given by
2

2
E=P 2 9 Ly,y), 3)
2m, 2m, 2m, _

where p, and p, are the size-quantized components of the momentum in the x-y plane,
perpendicular to the wire axis, ¢ is the longitudinal component of the momentum in the
wire direction, m;, m, are the effective masses for the motion in the x and y directions, re-
spectively, and Ufx,y) is the electron potential energy. In Eq.(3),
U,(x,y)= q°/2m_(x,y) is the additional momentum dependent potential, so that the to-

g’ >q. =

tal effective potential is given by
Ueﬁ(xay)zU(xay)+Uq(x’y)' (4)
If m_(x,y)is constant and independent of the motion direction, the effective potential dif-

fers from the real potential by a constant. However, if the effective mass depends on the
coordinates, the effective potential depends on the longitudinal momentum q.

The energy level in the quantum wire of depth U, differs from the energy level in
the quantum well of the same depth. The energy level in the wire is closer to the top of
the potential well, and, in the case of a very shallow potential well, the level energy is ex-
ponentially small in comparison to the potential depth.

On the other hand, the common feature of one- and two-dimensional confinement
is the existence of an energy level in the potential of an arbitrary depth. Therefore, the
condition of the disappearance of the confinement potential is the same for a quantum
wire as for a quantum well, see Eq. (2). However, the dependence of the energy level po-
sition on ¢ in the quantum wire is different from that for a quantum well.

For a quantum well, the anisotropy of effective masses leads to the following
equation for the critical longitudinal momentum:

' ,, 1 1 ,, 1 1

Yy qy(2my1 2m,, )+ (2m‘,1 2m,, -

For a quantum wire, the critical value of the longitudinal momentum is given by

13
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2m:l 2mz2
Hence, the influence of anisotropy of the effective mass in quantum wire on the critical
value of longitudinal momentum is strongly dependent on the transverse effective mass
corresponding to a given subband, i.e. this value is different for levels corresponding to
m. = m_and m. = m;. We consider the influence of anisotropy using a Si-Ge quantum
wire as an example.

Rectangular Quantum Wire

The dependence of potential for the transverse motion Uy (x,y) on the longitudinal mo-
mentum g leads to the dependence of the size-quantized energy on g. Hence, the position
of the quantum level of localized electrons with different g depends on g, and the energy
spectrum is nonparabolic.
We consider the rectangular quantum wire of finite depth U, . Practical quantum wires do
not usually have a rectangular cross-section. However, the position of energy level in
quantum wire of a finite depth only weakly depends on the shape of cross-section (see
Ref.4). The comparison of our results for rectangular wires with our own calculations for
the quantum wires with circular cross-section, confirm the conclusion reached in Ref.4.
The potential depth of the quantum wire strongly depends on strain, however the effect of
strain could be accounted for the renormalization of potential depth U, [5,6].

The calculation of the spectrum for the case of rectangular quantum wire yields
the following expression for the electron energy, E:

2
E=-U,+ Zhaz (k2 + D g2 4 Bt gy

x1 vi zl
Here Uy is the potential wire depth, a is the size of the wire in x direction, 7=ga/2 is di-
mensionless longitudinal momentum. The dimensionless components of transverse mo-
mentum £, and k, are the solutions of the following system of equations

Kk cos 2
k2 +6° 2
(6)
k, kB
= C0S ——F————=.
k245 my My, 2\jmy, [ m,,
g myl mx2

Here f=b/a is the size ratio of the wire in the x and y directions,

2, My 42
x—k;+—=1k,

2 _ My My, o vi
5= (P My ,
m, m,
=2U0mxl
b
Py

a=m,/m,.
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Equations (6) describe all energy states even with respect to x and y, including the lowest

energy level. For the levels corresponding to the odd states, the right-hand sides of equa-
172

m
tions (6) are to be replaced by sin(k, / 2)(sin(k,8 2)).

2m7?
For isotropic and equal effective masses (a@=1), we obtain the standard solution
describing a two-dimensional confinement, and the E(g) dependence is parabolic.

1.4

-
N
|

dimensionless energy, E
-—
]

o
®
1

0.6 -+ i
0 0.4 0.8 - 12

dimensionless wave vector

Fig.1. Dimensionless energy, E, versus 77 for a=0.2,3=1. Lines: 1 - p=1,2 - =10, 3 -
quantum well.

For an isotropic but space dependent effective mass (and & < 1), the bound states
disappear for ¢>q.° = y/(1-a). Fig. 1 shows the energy spectrum for the lowest sub-
band for y=1I, a=0.2. For these parameter values, there is only one energy level. Curve
1 corresponds to the square quantum wire (a = b), curve 2 corresponds to the case
b/a=10, and curve 3 corresponds to the quantum well of the same depth. The positions of
levels are different for g<g., but for ¢ = g., all curves converge at the same point, since
the energy level exists for the one- and two-dimensional confinement for an arbitrary
potential depth, not matter how shallow. At g = ¢q.,, all spectra terminate. The dispersion
relation for the isotropic but space dependent effective mass in the quantum wire was
considered also in Ref. 7. For this case, their results agree with ours.
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dimensionless energy, E
—
6, }

0.5 :

0 1 2
dimensionless wave vector

Fig.2 Dimensionless energy, E versus 7 for different @ and z=1. Lines: 1 - ¢=0.2, 2 -
a=0.4, 3 - o=0.6.

Fig. 2 shows the dependence of energy E versus 7 for different values of  for a
square quantum wire with dimensionless potential depth 7=1. As can be seen from the
figure, g., decreases with the decrease of a.

The influence of anisotropy of the effective mass depends on the mass in the direction
of quantization corresponding to a given quantum level . If the level corresponds to the
value of effective mass m, = m, = m_,, m, = m (type a level) the critical value of longitu-
dinal momentum is given by Eq. (5), where m.; and m., have to be replaced with m_;
and m_, respectively.

If the quantum levcl corresponds to the effective mass m, = m,= m,, m. = my (type b
level) masses m.; and m;; in Eq. (5) have to be replaced with my; and my; respectively.
Fig.3 shows a dependence of the energy (E) on 7 for levels of types (a) and (b) for
a=0.2,m1,/mw=0.2, m_2=my.
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Fig.3 Dimensionless energy, E versus 7 for =10, f=1. a=0.2, m;; /m;=0.2, m >
/m;>=1. Lines (a) and (b) correspond to the levels of type (a) and (b).

The SiGe Quantum Wire

As an example, we consider a p-type SiGe wire with 30% Ge molar fraction. In
this case, the heavy hole masses are isotropic and weakly nonparabolic [6]. The effect of
strain can be taken into account by the renormalization of potential depth of quantum
wire [6]. We can apply to this case the same theory as for electrons. For the Ge rectan-
gular quantum wire with 7nm*7 nm cross-section, the 2D spectrum terminates at 280
meV. Hence, the impact ionization by holes in the Si-Ge quantum wired will be deter-
mined by the impact ionization rates in silicon, and not in SiGe. This result is similar to
that for electrons in AIGaN/GaN/AlGaiv quantum wells [3]. In the same way, the effects
of the real space transfer [2] of holes from the quantum wires into the cladding layer as
well should be affected.

2. Consequences of space dependence of effective mass in quantum dots

Introduction

We propose a semi-analytical model for the quantum dots spectra that accounts for the
space dependence of electron (hole) effective mass and the effective mass anisotropy of
the dot material and of the surrounding matrix. This dependence and this anisotropy sig-
nificantly affect the position of the quantum levels. Our analysis shows that quantum dot
spectra are relatively insensitive to the exact shape of the quantum dots.

The common feature of one- and two-dimensional confinement is the existence of
an energy level in the potential of an arbitrary depth. Therefore, the condition of disap-
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pearance of the confinement potential is the same for a quantum wire as for the quantum
well. The difference between one- and two-dimensional confinements is reflected only in
the energy level positions.

The situation for the case of quantum dot differs from that for quantum wells and
wires. In a shallow quantum dot, the quantum level doesn’t exist. The level appears if the
potential depth exceeds

242
U = s, ™
8ma
where a is the linear size of the dot, and m is the mass of the particle in the dot [8].
In this article, we discuss the electronic (holes) states in quaritum dots with varying ef-
fective mass. We take into account the effective mass anisotropy, and compare our re-
sults with the results of the numerical calculations for InAs quantum dots [4].
In the simplest case of quantum dot formed by two materials with parabolic con-
duction bands, the total energy is given by
21,2
E= h'k
2m,

+U,,

where k is the size-quantized component of the wave vector. For a spherical quantum
dot, the value of k is found by solving the following algebraic equation

ak
ctg(ka) =——— : ®)

Here a = % . Eq. (8) shows that the space dependence of effective masses of electron

(hole) doesn’t change the critical potential of the appearance of the energy level in
quantum dot, i.e. the energy level appears if the potential depth exceeds the value given
by Eq.(7) with m=m,. However, the energy level positions for electrons (or holes) in a

quantum dot strongly depends on « .

Rectangular Quantum Dot.

The calculation of the spectrum of the case of rectangular quantum dot yields the
following expression for the electron (hole) energy, E :

2h? m m
E=—U0+—az—(kf +m—"‘ky2 +—=2LE 2, 9)

1 1 m,
Here the anisotropy of eﬁy'ective mass was taken into account, and the dimensionless
components of the size-quantized wave vector k,,k,,k, are the solutions of the system
of algebraic equations, similar to (8).
Let a,,a,,a, are the sizes of the dot in the x, y, and z directions, and m,,
and m,, are the components of effective masses in the direction i/ = x, y,z inside and

outside of the dot respectively.
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Fig.4 Dimensionless energy, €= 7 versus parameter « for =10, lines: 1 -
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For the isotropic, but space-dependent effective mass the position of energy level
strongly depends on the ratio @ =m,, /m,,. Fig. 4 shows the energy spectrum for the

2
2m U,a;
2

lowest level for y = =10. Curve 1 is for the cubic dot (a,/a, =a./a,=1) ,

curves 2, 3, and 4 correspond to the rectangular dots with a,/a, =a, la,=24,10,

respectively. With an increase in a, the energy level moves closer to the top of the
potential dot.
Let us now consider the anisotropic effective mass in the dot m,, =m,, <m,,, but

isotropic effective mass in the barrier region m,, =m,, =m.,, and a=1. Fig.5 shows the

dependence of the energy level on the ratiom,, / m., for =10, (curve 1) for a cubic dot
and for rectangular dots a, /a, =a,/a, =24 (curves 2 and 3). As can be seen from the

figure, a decrease in anisotropy (i.e. an increase in m,, / m.,) leads to the bottom level
moving closer to the top of the potential well. However, the effect is not too strong, and,
hence, the isotropic model might serve as reasonable approximation for the calculations
of the energy levels in quantum dot.

4 In the opposite limiting case, the effective mass is anisotropic in the barrier region
m, =m, <m.,, and isotropic in the dot region and o=1. Fig.6 shows the dependence of

the enegry level on the anisotropy in the barrier region for y=10, for cubic and
rectangular dots. As can be seen from the figure, a decrease in anisotropy leads to the
bottom level moving closer to the top of the potential well. However, once again, the
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effect is not too strong, which confirms our conclusion that an isotropic model might
serve as a reasonable approximation for the calculations of the energy levels in a quantum

dot.
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Fig.5 Dimensionless energy, &, versus ratio m, /m_, for =10, =1, lines: 1 -
a,/a,=a./a =1;lines23-a,/a,=a/a =24
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Fig. 6. Dimensionless energy, &, versus ratio m,, /m_, for y=10, o=1, lines: 1 -
a,/a,=a,/a,=1;lines2,3-a,/a,=a,/a, =24

20




Conclusions

1. We considered the consequences of the space-dependence of the electron and hole ef-
fective mass on the spectra of quantum wires. Just like for quantum wells, the space
dependence of effective mass leads to the appearance of additional momentum-
dependent potential . As an example, the influence of anisotropy of effective mass
electrons and holes was considered for Si-Ge quantum wires [9].

2. The consequences of the space-dependence of the electron (hole) effective mass on
the spectra ot quantum dots were considered. The space dependence of the effective
mass doesn’t lead to the change of the critical potential depth of the appearing of en-
ergy level in the dot. However, this dependence affects the position of the energy
levels. The anisotropic effective mass has been considered [10].

3. Quantum Dot M-I-S Structures

We fabricated a M-I-S structure on the test i-Si epilayer on n'-type substrate supplied by
Professor Lagally's group. After chemical cleaning, we used photolithography to define
the contacts and deposited the contact metal layer (1000A-thick Aw/800A-thick Ag/500
A-thick Au) by an e-beam evaporator. Current-voltage and capacitance-voltage charac-
teristics were measured in the different parts of the wafer. A typical current-voltage char-
acteristic of this structure is shown on the Fig.7.

T T

.3 T
107 | Aw/undoped-Si/n*-Si

{4.0
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107} 130
< 10°®
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S 107 {120 €
= 1 o
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1 — o
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Figure 7. Current voltage characteristic of test MIS structure.
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